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Abstract. The paper concerns multicriteria decision making under uncertainty 
with scenario planning. This topic is explored by many researchers because almost 
all real-world decision problems have multiple conflicting criteria and a determin-
istic criteria evaluation is often impossible (e.g. mergers and acquisitions, new 
product development). We propose two procedures for uncertain multi-objective 
optimization (for dependent and independent criteria matrices) which are based on 
the SAPO method – a modification of the Hurwicz’s rule for one-criterion prob-
lems, recently presented in another paper. The new approaches take into account 
the decision maker’s preference structure and attitude towards risk. It considers the 
frequency and the level of extreme evaluations and generates logic rankings for 
symmetric and asymmetric distributions. The application of the suggested tool is 
illustrated with an example of marketing strategies selection. 
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1. Introduction 

The paper deals with multiple criteria decision making for cases where attribute (criteri-
on) evaluations are uncertain. This topic is investigated by many researchers. (Durbach, 
Stewart 2012) provide an impressive review of possible models, methods and tools 
used to support uncertain multicriteria decision making (e.g. models using probabil-
ities or probability-like quantities, models with explicit risk measures, models with 
fuzzy numbers, models with scenarios). The number of various contributions devoted 
to uncertain multiobjective optimization is evidence of the theoretical (Dominiak 2009; 
Eiselt, Marianov 2014; Janjic et al. 2013; Michnik 2013b) and practical (Aghdaie et al. 
2013; Ginevičius, Zubrecovas 2009; Hopfe et al. 2013; Korhonen 2001; Lee 2012; 
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Michnik 2013b; Mikhaidov, Tsvetinov 2004; Montibeller et al. 2006; Ram et al. 2010; 
Suo et al. 2012; Tsaur et al. 2002; Wang, Elhag 2006; Watkins et al. 2000) importance 
of this topic. In this contribution two new procedures (for dependent and independent 
criteria matrices) designed for multicriteria decision making with scenario planning 
are presented. The goal of these approaches is to select optimal decisions and generate 
rankings of alternatives for one-shot decision problems. The proposed methods take into 
consideration decision makers’ preferences and attitude towards risk. 

The paper is organized as follows. Section 2 deals with the main features of DMU 
(decision making under uncertainty) with scenario planning. Section 3 briefly de-
scribes the essence of multiobjective decision making (MDM) and its discrete version 
(DMDM). Section 4 is devoted to methods applied to multicriteria decision making 
under uncertainty with scenario planning (MDMU+SP). Section 5 demonstrates how 
the SAPO method, a modification of the Hurwicz’s decision rule which is presented 
in (Gaspars-Wieloch 2014d), can be used as a tool in multicriteria optimization under 
uncertainty. Section 6 provides a case study related to the choice of an optimal market-
ing strategy. Conclusions are gathered in the last part. 

2. Decision making under uncertainty with scenarios

According to the Knightian definition (Knight 1921), decision making under uncertainty 
(DMU), in contrast to decision making under certainty (DMC) or risk (DMR), is charac-
terized by a situation where future factors (quantitative and qualitative) are neither deter-
ministic nor probabilistic at the time of the decision (complete uncertainty, uncertainty 
without probabilities). Actually the decision maker (DM) has to choose the appropriate 
alternative (decision, act, project, strategy) on the basis of some scenarios (events, states 
of nature) whose probabilities are not known (Chronopoulos et al. 2011; Dominiak 
2006; Groenewald, Pretorius 2011; Render et al. 2006; Sikora 2008; Trzaskalik 2008; 
von Neumann, Morgenstern 1944). Apart from DMU, DMR and DMC, there is a forth 
category – decision making with partial information (DMPI) – characterized by prob-
ability distributions not known completely (Cannon, Kmietowicz 1974; Dubois, Prade 
1988; Guo 2011; Kapsos et al. 2014; Klir, Folger 1988; Kmietowicz, Pearman 1984; 
Kofler, Zwiefel 1993; Michalska 2014; Weber 1987). 

There are many classical decision rules designed for DMU, such as the Wald’s cri-
terion (Wald 1950), the maximax criterion presented e.g. in (Pazek, Rozman 2009), the 
Hurwicz’s criterion (Hurwicz 1952), the Savage’s criterion (Savage 1961), the maximin 
joy criterion (Hayashi 2008), the Bayes (Laplace’s) criterion presented e.g. in (Render 
et al. 2006). The literature also offers many diverse extensions or hybrids of those 
methods, e.g. (Basili 2006; Basili et al. 2008; Basili, Chateauneuf 2011; Ellsberg 2001; 
Etner et al. 2012; Gaspars 2007; Gaspars-Wieloch 2012, 2013, 2014a, 2014c, 2014d, 
2014e, 2015; Ghirardato et al. 2004; Gilboa 2009; Gilboa, Schmeidler 1989; Marinacci 
2002; Piasecki 1990; Schmeidler 1986; Tversky, Kahneman 1992). Nevertheless, the 
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majority of the extended rules refer to the probability calculus (for instance expected 
utility maximization, maximin expected utility, α-maximin expected utility, restricted 
Bayes/Hurwicz, prospect theory, cumulative prospect theory, Choquet expected utility), 
which is rather characteristic of DMR (or DMU with probabilities). Let us remind that 
according to the Knight’s definition the uncertainty occurs when we do not know (i.e. 
we can not measure) the probabilities of particular scenarios: “when the uncertainty may 
be measured, it is called “risk” (Knight 1921).

As it was mentioned before, scenario planning (SP) can be used within the frame-
work of DMU (Dominiak 2006; Pomerol 2001). SP is a popular and comprehensive de-
cision support tool for considering future uncertainties. It is a technique for facilitating 
the process of identifying uncertain and uncontrollable factors which may influence the 
effects of decisions in the strategic management context. The way how scenarios should 
be constructed is described e.g. in (Dominiak 2006; Van der Heijden 1996). 

The result of the choice made under uncertainty with scenario planning depends on 
two factors: which decision will be selected and which scenario will occur. DMU can 
be presented by means of a payoff matrix where m (the number of rows) denotes the 
number of mutually exclusive scenarios (S1, …, Si, … Sm), n (the number of columns) 
stands for the number of decisions (D1, …, Dj, …, Dn) and aij is the profit connected 
with scenario Si and alternative Dj. We assume in this paper that the distribution of 
payoffs related to a given decision is discrete and that the set of those profits can be a 
multiset (a bag). The contribution concerns searching an optimal pure strategy. A pure 
strategy is a solution assuming that the DM chooses and completely executes only one 
alternative. Meanwhile the mixed strategy allows him or her to select and perform 
a weighted combination of several accessible alternatives (Gaspars-Wieloch 2014b; 
Officer, Anderson 1968; Puppe, Schlag 2009; Sikora 2008). 

We recognize both uncertainties: internal (related to DM’s values and judgments) 
and external (related to imperfect knowledge concerning consequences of action), but 
in this paper we focus on the latter (Durbach, Stewart 2012; Stewart 2005).

Existing decision rules differ one from another with respect to the DM’s attitude 
towards risk which can be measured, for instance, by means of the coefficient of pes-
simism (α) or the coefficient of optimism (β). Note that in this context we do not treat 
risk as a situation where the probability distribution of each parameter of the decision 
problem is known, but we mean the possibility that some bad circumstances will happen 
(Dominiak 2006, 2009; Fishburn 1984).

It is worth emphasizing that some rules find application when the DM intends to 
perform the selected strategy only once, i.e. the decision is experienced only once (e.g. 
Wald’s criterion, Hurwicz’s criterion, Savage’s criterion, maximax criterion, maximin 
joy criterion). Others are recommended for people contemplating realization of the 
chosen variant many times (Laplace’s criterion). In the first case, alternatives are called 
one-shot (one-time) decisions. In the second case, one deals with multi-shot decisions. 
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This paper focuses on one-shot decision problems which are commonly encountered 
in business, economics and social systems and have been receiving increasing research 
interest because of the growing dominance of service industries for which such prob-
lems are particularly applicable. Typical examples of one-shot decisions include merg-
ers and acquisitions (M&A), emergency management for irregular events, supply chain 
management of products with short life cycles, new product development and private 
real-estate investment (Guo 2010, 2011, 2013, 2014; Liu, Zhao 2009).

3. Multiobjective (multicriteria) decision making 

The multiobjective optimization or multiple objective decision making (MDM) is a 
topic discussed in many contributions because decision making is a part of our life and 
almost all real-world decision problems have multiple conflicting criteria. Usually those 
problems do not have a single global solution. Theoretical issues concerning multigoal 
optimization are comprehensively treated for instance in (Ehrgott 2005; Jahn 2004; 
Marler, Arora 2004; Michnik 2013b; Sawaragi et al.1985; Trzaskalik 2014).

MDM has diverse goals, such as selecting a preferred alternative, ranking alterna-
tives from the best to the worst, sorting the alternatives into ordered classes such as 
“good” and “bad” (Durbach, Stewart 2012). There are various methods enabling one to 
find the set of satisfactory solutions and the compromise solution (i.e. the final choice 
among efficient solutions) for multiobjective problems, such as AHP – analytic hier-
archy process (Saaty 1980; Podvezko 2009), ANP – analytic network process (Saaty 
1996; Azimi et al. 2011), COPRAS-G method (Zavadskas, Kaklauskas 1996), TOPSIS 
(Hwang, Yoon 1981; Azimi et al. 2011), SAW – simple additive weighting method 
(Churchman, Ackoff 1954), goal programming (Charnes et al. 1955), e-constraint meth-
od (Chankong, Haimes 1983), lexicographic method (Khorram et al. 2010), VIKOR-S 
(Michnik 2013b), WINGS (Michnik 2013a) and diverse hybrids (e.g. Haeri, Tavakkoli-
Moghaddam 2012; Hsu 2014; Wu et al. 2013). 

Multicriteria methods differ according to how they (a) evaluate performances on 
each attribute and (b) aggregate evaluations across attributes to arrive at an overall 
global evaluation (Durbach, Stewart 2012; Greco et al. 2010).

(Marler, Arora 2004) divide multi-objective optimization concepts and methods into 
three categories: (a) methods with a priori articulation of preferences (MPAP), (b) meth-
ods with a posteriori articulation of preferences (MPSAP) and (c) methods with no ar-
ticulation of preferences (MNAP). In MPAP the user indicates the relative importance of 
the objective functions or desired goals (by means of parameters which are coefficients, 
exponents, constraint limits) before running the optimization algorithm. The preference 
structure can be defined, among other things, on the basis of aspirations levels (Lotfi 
et al. 1997), utility functions (Chang 2011) and weights representing the importance of 
each criterion (e.g. Gaspars-Wieloch 2011). MPSAP entail selecting a single solution 
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from a set of mathematically equivalent solutions. It means that the DM imposes prefer-
ences directly on a set of potential final solutions.

Within MDM, the set of alternatives may be either explicitly defined and discrete in 
number or implicitly defined via constraints in a mathematical programming formula-
tion (Ehrgott 2005). In the first case the problem is discrete (DMDM), in the second 
one – we deal with the continuous version of multicriteria decision making (CMDM). 
This contribution is devoted to DMDM. The discrete problem consists of n decisions 
(D1, …, Dj, …, Dn), each evaluated on p criteria denoted by: C1, …, Ck, …, Cp. There 
are also n×p evaluations of alternatives (Dj) in terms of particular criteria (Ck), accord-
ing to some suitable performance measures. Let us denote them by aj

k. 
The multi-objective optimization may be analyzed for the deterministic (MDMC – 

multi-criteria decision making under certainty) or non-deterministic (MDMU, MDMR, 
MDMPI) case. In the second situation the evaluation of alternatives is complicated by 
their performance on at least some attributes not being known with certainty (Durbach, 
Stewart 2012). In this paper we consider the case of MDMU.

4. Multicriteria decision making with scenario planning 

Many MDM models and methods are based on essentially deterministic evaluations 
of the consequences of each action in terms of each criterion, possibly subjecting final 
results and recommendations to a degree of sensitivity analysis. In many situations, such 
an approach can be justified when the primary source of complexity in decision making 
relates to the multicriteria nature of the problem rather than to the stochastic nature of 
individual consequences. Nevertheless, situations do arise, especially in strategic plan-
ning problems, when uncertainty is as critical as the issue of conflicting management 
goals. In such cases, approaches designed for MDMU become necessary, for instance 
(a) the multi-attribute utility theory, (b) pairwise comparisons of probability distribu-
tions, (c) the use of surrogate risk measures (quantiles, variances) as additional deci-
sion criteria, (d) models combining fuzzy numbers with the analytic hierarchy process, 
(e) fuzzy TOPSIS, and (f) the integration of MDMU and scenario planning (SP) (Ben 
Amor et al. 2007; Dominiak 2009; Durbach 2014; Durbach, Stewart 2012; Keeney, 
Raiffa 1993; Liu et al. 2011; Michnik 2013b; Stewart 2005; Triantaphyllou, Lin 1996; 
Urli, Nadeau 2004; Watkins et al. 2000; Xu 2000; Yu 2002; Zaras 2004). (Durbach, 
Stewart 2012) state that uncertainties become increasingly so complex that the elicita-
tion of measures such as probabilities, belief functions or fuzzy membership functions 
becomes operationally difficult for DMs to comprehend and virtually impossible to 
validate. Therefore, in such contexts it is useful to construct scenarios which describe 
possible ways in which the future might unfold. Hence, the last example mentioned in 
the previous paragraph (MDMU+SP: multicriteria decision making under uncertainty 
with scenario planning) will be considered in this paper. When MDMU+SP is taken 
into account, the problem can be discrete (the number of possible decisions is finite and 
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countable) or continuous (the set of decisions is given through constraints), but here, as 
already mentioned, we only discuss the discrete type. 

The discrete version of MDMU+SP (DMDMU+SP) consists of n decisions (D1, 
…, Dj, …, Dn), each evaluated on p criteria denoted by: C1, …, Ck, …, Cp and on 
m, scenarios (S1, …Si, … Sm). Hence, the problem can be presented by means of p 
payoff matrices (one for each criterion) and p×n×m evaluations. Each payoff matrix 
contains n×m evaluations, say aij

k, which signify the performance of criterion Ck result-
ing from the choice of decision Dj and the occurrence of scenario Si . 

According to (Durbach, Stewart 2012; Michnik 2013b) MDMU+SP models can be 
divided into two classes. The first one (A) includes two-stage models in which evalua-
tions of particular alternatives are estimated in respect of scenarios and criteria in two 
separate stages. Class A contains two subclasses: A-CS and A-SC. Subclass A-CS de-
notes the set of approaches considering decisions separately in each scenario before 
and setting a n×m table giving the aggregated (over attributes/criteria) performance of 
alternative Dj under scenario Si. These evaluations are then aggregated over scenarios. 
In subclass A-SC the order of aggregation is reversed – performances are generated 
across scenarios and then measures are calculated over criteria. The second class (B) 
consists of one-stage procedures considering combinations of scenarios and attributes 
(scenario-criterion pairs) as distinct meta-criteria. There is currently no consensus on 
the best way to solve uncertain multigoal problems. 

Within the framework of the discrete multicriteria optimization with scenarios, re-
searchers have already proposed, among others, the following techniques: 

1. additive aggregation giving a scenario-based utility (Stewart 2005);
2. multiattribute value modelling (Goodwin, Wright 2001); 
3. results aggregation over scenarios using a relative likelihood (Korhonen 2001); 
4. maximization of the worst performance across scenarios (Montibeller et al. 2006; 

Ram et al. 2010); 
5. dominance relation based on Wald’s rule (Dominiak 2006); 
6. hierarchy and quasi-hierarchy approach – when the DM is able to formulate his 

preferences in the form of order of criteria (Dominiak 2006); 
7. distance function between alternatives and different reference points, such as the 

ideal pessimistic or ideal optimistic point – when the DM can describe weights of 
criteria (Dominiak 2006; Michnik 2013b); 

8. interactive approach based on the Interactive Multiple Goal Programming and 
potency matrices with criteria evaluation of the ideal optimistic (max-max), ide-
al pessimistic (max-min) and current pessimistic (min-min) solution (Dominiak 
2006); 

9. interactive approach applying Monte Carlo simulation (Dominiak 2009);
10. combination of Hurwicz’s rule with MDM (Ravindran 2008; Michnik 2013b).
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Some of these methods are a little criticized – for instance the approach used by 
(Korhonen 2001) due to the fact that the set of scenarios does not constitute a complete 
probability space. According to (Durbach, Stewart 2012), one should not aggregate 
scenario “probabilities”. In the case of dominance relation, hierarchy, quasi-hierarchy 
and distance function described in (Dominiak 2006) only the worst evaluations of par-
ticular alternatives are taken into account, which means that those procedures are rather 
devoted to a radical pessimist and that they do not fit the solution to the DM’s attitude 
towards risk (understood as the possibility that some bad circumstances will happen). 
Furthermore, some rules assume that the occurrence of a given scenario with respect 
to criterion Ck does not mean that this state of nature will be the true one in terms of 
another criterion (Ravindran 2008). In such approaches, evaluations from one payoff 
matrix do not depend on evaluations from other matrices (payoff matrices are totally 
independent), which is rather rarely found in real decision problems. On the other hand, 
interactive approaches proposed by (Dominiak 2006, 2009) are much desired since they 
are very flexible – they can be used without any a priori knowledge about DM’s prefer-
ences and can also be applied when criteria are on the ordinal scale. 

In Section 5, a new approach for generating rankings of decisions under uncertainty 
will be presented. We will notice that this procedure has many advantages. Firstly, it 
adjust the recommended solution not only to the DM’s preference structure concern-
ing particular criteria, but also to the DM’s attitude towards risk (measured by the 
coefficient of pessimism). Secondly, if necessary, it allows to treat matrices related to 
particular attributes as dependent. Thirdly, it enables to make a multi-criteria analysis 
even in problems with objectives defined in different dimensions and scales. Fourthly, 
the new method copes with asymmetric distributions of (aggregated) evaluations. 

5. The SAPO method for multicriteria decision making under uncertainty

The procedure proposed in this Section refers to a two-stage model (see Section 4). We 
will consider two cases (I and II). In the first case (Section 5.1.) we assume that payoff 
matrices related to particular attributes are dependent. Thus, for instance, evaluation aij

k 
can be only connected with evaluations aij

1, …, aij
k-1, aij

k+1, …, aij
p-1 and aij

p. Those 
values describe the performance of each criterion by decision Dj provided that scenario 
Si happens. There is no possibility that, for a given alternative, evaluations concerning 
particular criteria, come from different scenarios. This assumption implies the neces-
sity of using A-CS model. In the second case (Section 5.2) we treat values related to 
one criterion as independent of evaluations of other criteria. That means that evaluation  
aij

k may be connected with any evaluation aij
1 (i = 1, …, m), any evaluation aij

2 (i = 1, 
…, m), … and any evaluation aij

p (i = 1, …, m). Those values describe the performance 
of each criterion by decision Dj assuming that any scenario occurs for criteria C1, …, 
Ck-1, Ck+1, …, Cp. The second case (II) allows us to apply A-SC model. 
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In both approaches, we will take advantage of an aggregate objective function (see 
SAW, Section 3) and a modification of the Hurwicz’s decision rule, which is described 
and justified in (Gaspars-Wieloch 2014d). This modification is called “SAPO method”. 
In contrast to the original version of the Hurwicz’s criterion, the SAPO method copes 
with asymmetric distribution of payoffs. Even in that case, it recommends logic rank-
ings and provides answers reflecting the DM’s preferences. The procedure aforemen-
tioned is designed for one-criterion decision problems and its goal is to find an optimal 
pure strategy. The essence of the SAPO method is to multiply the coefficient of opti-
mism by all payoffs belonging to a suitably defined range of good results (not only the 
highest payoff) and to multiply the coefficient of pessimism by all values belonging to 
a properly set range of bad results (not only the worst payoff), according to the level 
of risk aversion and on the basis of some additional bounds or deviation degrees. The 
SAPO rule takes into account both the level and the frequency of extreme values.

The first steps of the procedure combining SAW with SAPO are common in both 
cases (A-CS and A-SC):

1. Present the multicriteria problem by means of p tables containing n×m evaluations 
aij

k (where i = 1, …, m and j = 1, …, n).
2. If criteria are defined in different scale or/and different units, use a normalization 

technique for each attribute separately (Equation 1 for maximized targets, Equation 2. 
for minimized targets), (Gaspars-Wieloch 2012, 2015). Otherwise, go to step 3.
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3. Define weights for each target (criterion): wk (k = 1, …, p) and declare the coef-
ficient of pessimism (α).

5.1. The SAPO procedure based on A-CS model (case I)

Let us analyze further steps of the SAPO(CS) approach – in the first place, criteria are 
aggregated within scenarios and then obtained values are calculated over scenarios:

4. Compute an aggregated measure for each pair of decision Dj and scenario Si (for 
each combination (Dj,Si)) and generate a table with n×m aggregated measures Aij 
or A(n)ij (Equation 3 for problems that do not require normalization, Equation 4 
for problems with normalized evaluations):
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5. Present the aggregated measures as a non-increasing sequence 1( ,..., ,..., )j j sj mjSq A A A=  
containing m terms (where m still denotes the number of scenarios, s is the number 
of the term in the sequence and A1j > Amj) for each alternative Dj. If the normali-
zation technique was applied in step 2, then, instead of values Asj, use measures 
A(n)sj in step 5 and all further steps.

6. Generate the subsequence of good results (SSqj
max) and the subsequence of bad 

results (SSqj
min) for each alternative: 

max max
1 1 1{ : ( ( ) )sj j j j mj sj jjSSq A Sq A d A A A A= ∈ − − ≤ ≤

 ( )max ( max)}sjjSSq C A∧ ≤ ∧ →  1,...,j n= , (5)
min min

1{ : ( ( ))j sj j mj sj mj j mjSSq A Sq A A A d A A= ∈ ≤ ≤ + −

 ( )min ( min)}j sjSSq C A∧ ≤ ∧ →  1,...,j n= , (6)
where d max and d min signify the allowable degrees of deviation from the highest (A1j) 
and the lowest (Amj) aggregated measure, respectively. The deviation degrees can be set 
separately for each decision and then, instead of d max and d min, parameters dj 

max and 
dj

min
 are applied. The deviation degrees are set arbitrarily by the DM. These parameters 

ought to satisfy the following conditions:

 max min 1d d+ < , (7)

 max min, 0d d ≥ . (8)
|SSqj

max| and |SSqj
min| denote final cardinalities of both subsequences. C is the maximal 

number of good and bad results computed according to constraint (9): 

  max{1, min{ ,1 } }C m= ⋅ α − α   . (9)

Equation (5) allows the DM to include in subsequence SSqj
max only the elements 

of the whole sequence which belong to the range determined by d max. For example, if 
d max = 0.2, A1j = 20, Amj = 5, then the elements of SSqj

max should satisfy the following 
constraint [20 0.2 (20 5);20] [17;20]sjA ∈ − ⋅ − = . Note that the final cardinality of SSqj

max 
is additionally limited by C which depends on the pessimism and optimism indices. 
Closer to 0 and 1 they are, fewer elements subsequence SSqj

max can contain. Such a rela-
tion may be explained by the fact that more radical the decision maker is, more likely, 
in his or her opinion, one of the extreme values is. If m = 10 and α = 0.2, SSqj

max may 
constist of at the most two elements which, due to the last part of Equation (5), must 
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be the highest. Thanks to parameters dmax and α the DM is able to set a subsequence 
SSqj

max which, from his or her point of view, is composed of appropriate values, because 
formula (5) considers both the subjective evaluation of good values and the DM’s risk 
aversion. Equation (6) has an analogical interpretation. 

7. Compute averages of good and bad results for each decision:

  
max

max
max

1

sj j

sjj
A SSqj

AV A
SSq ∈

= ∑  1,...,j n= , (10)

  
min

min
min

1

sj j

j sj
A SSqj

AV A
SSq ∈

= ∑  1,...,j n= . (11)

8. Calculate the SAPO(CS) measure (SCS
j) for each alternative: 

  
maxmin

min max
11

(1 )
j jCS

jj j

m SSqm SSq
S AV AV

m m

− ++ −
= α ⋅ + − α ⋅  1,...,j n= . (12)

Parameters min max, ,j jm SSq SSq  inserted in condition (12) enable one to take into 
consideration the size of both subsequences, i.e. the frequency of extreme aggregated 
measures. SCS

j is proportional to the number of good values, i.e. the final cardinality of 
SSqj

max, and inversely proportional to the number of bad values, i.e. the final cardinality 
of SSqj

min, because a given alternative is more attractive when it contains many high 

aggregated measures and few low results. Fractions 
min1 jm SSq

m

+ −
 and 

max1 jm SSq

m

− +
 

are equal to 1 when particular subsequences consist of one term. If |SSqj
min| increases, 

then the first fraction is less than 1, but greater than 0.5. Weight 
min1 jm SSq

m

+ −
 is a kind 

of punishment for the alternative whose number of bad results is high because such a 
distribution of measures is not desirable for the decision maker. On the other hand, if 
|SSqj

max| increases, then the second fraction is greater than 1, but less than 1.5. Weight 
max1 jm SSq

m

− +
 is a bonus for the alternative whose number of good results is high since 

such a value distribution is much desired.
9. Select the decision according to Equation (13):

 * arg maxCS CS
j jj

D S= . (13)

5.2. The SAPO procedure based on A-SC model (case II) 

Now, let us check how the remaining steps of the SAPO(SC) procedure should be for-
mulated. We assume that evaluations from particular matrices are independent.

4. Present evaluations as a non-increasing sequence 1( ,..., ,..., )k k k k
j j sj mjSq a a a=  contai-

ning m terms (where m denotes the number of scenarios, s is the number of the 
term in the sequence and ak

1j > ak
mj) for each alternative Dj and within each crite-
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rion. If the normalization technique was applied in step 2, then, instead of values 
ak

sj, use measures a(n)k
sj in step 4 and all further steps.

5. Generate the subsequence of good results (SSqj
k,max) and the subsequence of bad 

results (SSqj
k,min) for each alternative and within each criterion: 

( ),max ,maxmax
1 1 1{ : ( ( ) )k kk k k k k k k

j sj j j j mj sj j jSSq a Sq a d a a a a SSq C= ∈ − − ≤ ≤ ∧ ≤

 
( max)}k

sja∧ →  1,..., ; 1,...,k p j n= = , (14)

( ),min ,minmin
1{ : ( ( ))k kk k k k k k k

j sj j mj sj mj j mj jSSq a Sq a a a d a a SSq C= ∈ ≤ ≤ + − ∧ ≤

 ( min)}k
sja∧ →  1,..., ; 1,...,k p j n= = , (15)

where dmax and dmin signify the allowable degrees of deviation from the highest (ak
1j) 

and the lowest (ak
mj) evaluation, respectively. The deviation degrees can be set sepa-

rately for each decision (or for each criterion / and for each criterion) and then, instead 
of dmax and dmin, parameters dj

max and dj
min

 (d
k,max and dk,min / dj

k,max and dj
k,min) are 

applied. As in case I, the deviation degrees are set arbitrarily by the DM and satisfy 
Equations (7)–(8). |SSqj

k,max| and |SSqj
k,min| denote final cardinalities of both subse-

quences and C is calculated following Equation (9). 
6. Compute averages of good and bad results for each decision within each attribute:

 
,max

,max
,max

1
kk

sj j

k k
j sjk

a SSqj

av a
SSq ∈

= ∑  1,..., ; 1,...,k p j n= = , (16)

  
,min

,min
,min

1
kk

sj j

k k
j sjk

a SSqj

av a
SSq ∈

= ∑  1,..., ; 1,...,k p j n= = . (17)

7. Calculate the criterion-dependent SAPO measure for each alternative: 
,min ,max

,min ,max
1 1

(1 )
k k
j jk kk

j j j

m SSq m SSq
S av av

m m

+ − − +
= α ⋅ + − α ⋅  1,..., ; 1,...,k p j n= = . (18)

Sk
j is proportional to the number of good evaluations connected with Dj, and inversely 

proportional to the number of bad evaluations related to Dj. Fractions 
,min1 k

jm SSq

m

+ −
 

and 
,max1 k

jm SSq

m

− +
 have a similar interpretation as in case I.

8. Compute an aggregated measure, the SAPO(SC) measure, for each decision Dj: 

 
1

p
SC k k
j j

k
S w S

=
= ⋅∑  1,...,j n= . (19)

9. Select the decision according to Equation (20):

  * arg maxSC SC
j jj

D S= . (20)
Note that the number of scenarios considered for particular attributes can be different 
in case II, since events from each matrix are totally independent. If such a situation 
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takes place, it is recommended to apply separate notation for each set of scenarios. For 
instance, m(k) may denote the number of states of nature assigned to attribute Ck and  
{Sk

1, …, Sk
i, …, Sk

m(k))} may be the set of scenarios connected with this criterion. 
SAPO(CS) and SAPO(SC) are methods with a priori articulation of preferences. 

6. Case study

We will illustrate the use of the approach described in the previous section on the basis 
of a case of marketing strategies (activities) selection and by referring to a very interest-
ing paper concerning the so-called 4P marketing model including product, price, pro-
motion and place (Ginevičius et al. 2013). Results gathered by (Ginevičius et al. 2013) 
enable one to assess the effectiveness of marketing strategies thanks to a multicriteria 
evalutation procedure based on the sum of products of criteria values and their weights 
properly estimated. Authors of that contribution develop a hierarchical structure of cri-
teria describing enterprise marketing system. They distinguish 8 criteria of product (e.g. 
innovations, product design, quality, brand), 7 criteria of price (e.g. initial price, terms 
of payment, price differentiation), 7 criteria of promotion (e.g. advertising, increase of 
sales, corporate identity) and 5 criteria of place (e.g. place of sale, sales online). All 
those criteria are integrated into one generalized quantity and are applied in order to 
quantitatively evaluate marketing activities. Note that if a company is trying to choose 
the best strategy among a set o potential activities, all criteria values are known before 
the choice made by the enterprise, since this data constitutes initial parameters of par-
ticular strategies. This set of criteria describes factors which are planned and controlled 
by the company. 

Now, let us analyze possible further steps performed by a fictitious enterprise, say 
enterprise “E”, which has already evaluated potential marketing activities (connected 
with a new product development) and selected 4 strategies with the highest measures 
proposed in (Ginevičius et al. 2013). Assume that enterprise “E” contemplates realiza-
tion of one of these activities, but it aims to choose the strategy which will maximize 
the future annual profit and the market share. Increasing these criteria is one of the 
most important objectives of business. Hence, we have two new criteria (apart from 
27 initial attributes enumerated by the authors mentioned), but, this time, they are a 
little beyond the control of the company. They depend not only on the decisions made 
by the company, but also on some macroeconomic, microeconomic and environmental 
factors (demand, fashion, population structure, tax mechanism, competitors’ strategies, 
misfortune, weather and so on). For such criteria (profit and market share) the exact 
estimation is rather complicated. Therefore, instead of using deterministic parameters, 
possible states of nature may be predicted, for instance by experts. In our example we 
assume that there are 5 possible scenarios. Forecasted (step 1) and normalized (step 2, 
Equation 1) criteria values for each pair (Dj,Si) are given in Table 1. Enterprise “E” 
declares attribute weights, e.g. w1 = 0.4, w1 = 0.6, and the level of pessimism, e.g. 
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α = 0.43 (step 3). Now, one should choose the appropriate procedure: SAPO(CS) or 
SAPO(SC). Profits and market shares certainly depend on each other, thus one cannot 
consider scenario evaluations independently, which means that the first approach is cor-
rect. We calculate aggregated measures (step 4, Equation 4, Table 2, rows 1–5), which 
are very similar to formulas applied by (Ginevičius et al. 2013). Then, non-increasing 
sequences of normalized synthetic values can be generated (step 5, Table 2, row 6). 
In order to define subsequences of good and bad values (step 6), we have to calculate 

{ }{ }max 1, 5 min 0.43,0.57 3C  = ⋅ =   and set deviation degrees, e.g. d max = d min = 0.3. 
The use of Equations 5–6 enables us to find the elements of both subsequences 

(Table 2, rows 7–8). For instance, { }max
1 0.600,0.554,0.532SSq =  since max

1 3SSq C≤ =  

and ( )0.600 0.3 0.600 0.326 0.600,0.554,0.532 0.600.− ⋅ − ≤ ≤

Table 1. Annual profit (mln euro) and market share (%): initial (ak
ij) and normalized (a(n)k

ij) 
values (Source: created by the author)

No Annual profit (C1) Market share (C2)
D1 D2 D3 D4 D1 D2 D3 D4

S1 2.5/0.38 4.0/0.84 4.5/1.00 3.0/0.53 20/0.29 22/0.41 15/0.00 21/0.35

S2 1.3/0.00 2.5/0.38 3.5/0.69 3.0/0.53 32/1.00 18/0.18 19/0.24 17/0.12

S3 1.6/0.09 3.0/0.53 4.3/0.94 2.0/0.22 29/0.82 19/0.24 16/0.06 18/0.18

S4 1.7/0.13 3.0/0.53 2.0/0.22 2.5/0.38 28/0.76 15/0.00 23/0.47 24/0.53

S5 1.5/0.06 3.5/0.69 4.2/0.91 4.0/0.84 30/0.88 17/0.12 16/0.06 24/0.53

Table 2. Aggregated measures A(n)ij (Source: created by the author)

No D1 D2 D3 D4

S1 0.326 0.585 0.400 0.424

S2 0.600 0.256 0.416 0.283

S3 0.532 0.354 0.410 0.193

S4 0.509 0.213 0.370 0.468

S5 0.554 0.346 0.398 0.655

Sqj 0.60;0.55;0.53;0.51;0.33 0.58;0.35;0.35;0.26;0.21 0.42;0.41;0.40;0.40;0.37 0.66;0.47;0.42;0.28;0.19

SSqmax
j 0.600; 0.554; 0.532 0.585 0.416; 0.410 0.655

SSqmin
j 0.326 0.256; 0.213 0.370 0.283; 0.193

AVmax
j 0.562 0.585 0.413 0.655

AVmin
j 0.326 0.234 0.370 0.238

SCS
j 0.589 0.414 0.442 0.445
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Now, let us compute the averages of good and bad results (step 7, Equations 10–11, 
Table 2, rows 9–10) and the SAPO(CS) measure (step 8, Equations 12, Table 2, row 11). 

For instance: 1
5 1 1 5 1 30.43 0.326 0.57 0.562 0.589.

5 5
CSS + − − +   = ⋅ ⋅ + ⋅ ⋅ =      

 According to 

Equation 13 (step 9) the first marketing strategy (D1) should be selected. The ranking 
is: D1, D4, D3, D2. Note that the coefficient of pessimism has a significant impact on 
the final decision. If α = 0.90, the ranking is as follows: D3, D1, D4, D2. Of course, 
the change of criteria weights also influences the order of activities (when w1 = 0.6, 
w1 = 0.4, the order is D3, D4, D2, D1 for α = 0.43 and D3, D1, D2, D4 for α = 0.90). 

7. Conclusions

Many rules for the discrete version of uncertain multicriteria decision making with 
SP have been already developed. Methods proposed in this paper: SAPO(CS) and 
SAPO(SC) for dependent and independent criteria matrices respectively – are based on 
the concept presented in (Ravindran 2008), i.e. they consider the DM’s risk aversion 
and they refer to SAW and the Hurwicz’s rule. Nevertheless, in the new approaches the 
additive weighting method is combined with a modification of the Hurwicz’s criterion – 
the SAPO method, which leads to logic rankings even in problems with asymmetric 
payoff distributions, because it analyzes the frequency of good and bad results related 
to particular decisions. SAPO(CS) and SAPO(SC) allow the DM to define precisely his 
or her preferences concerning the importance of considered goals, the attitude towards 
risk and the evaluation of extreme results related to particular alternatives. They do not 
require any information about the probabilities of states of nature, which is certainly a 
significant advantage. Both procedures can be successfully applied in any business or 
management multi-objective problem provided that future economic consequences are 
presented by means of scenario planning which is a comprehensive decision support 
tool for considering uncertainties.

Funding 

This work was supported by the Polish Ministry of Science and Higher Education [grant 
number 51102-116].

References 
Aghdaie, M. H.; Zolfani, S. H.; Zavadskas, E. K. 2013. Market segment evaluation and selection 
based on application of fuzzy AHP and COPRAS-G methods, Journal of Business Economics and 
Management 14(1): 213–233. http://dx.doi.org/10.3846/16111699.2012.721392

Azimi, R.; Fouladgar, M. M.; Zavadskas, E. K.; Basiri, M. H. 2011. Ranking the strategies of min-
ing sector through ANP and TOPSIS in a SWOT framework, Journal of Business Economics and 
Management 12(4): 670–689. http://dx.doi.org/10.3846/16111699.2011.62655

http://dx.doi.org/10.3846/16111699.2012.721392
http://dx.doi.org/10.3846/16111699.2011.62655


297

Business, Management and Education, 2014, 12(2): 283–302

Basili, M. 2006. A rational decision rule with extreme events, Risk Analysis 26: 1721–1728. 
http://dx.doi.org/10.1111/j.1539-6924.2006.00826.x

Basili, M.; Chateauneuf, A.; Fontini, F. 2008. Precautionary principle as a rule of choice with opti-
mism on windfall gains and pessimism on catastrophic losses, Ecological Economics 67: 485–491.  
http://dx.doi.org/10.1016/j.ecolecon.2007.12.030

Basili, M.; Chateauneuf, A. 2011. Extreme events and entropy: a multiple quantile utility model, International 
Journal of Approximate Reasoning 52: 1095–1102. http://dx.doi.org/10.1016/j.ijar.2011.05.005

Ben Amor, S.; Jabeur, K.; Martel, J. 2007. Multiple criteria aggregation procedure for mixed evalua-
tions. European Journal of Operational Research 181(3): 1506–1515. 
http://dx.doi.org/10.1016/j.ejor.2005.11.048

Cannon, C. M.; Kmietowicz, Z. W. 1974. Decision theory and incomplete knowledge, Journal of 
Management Studies 11(3): 224–232. http://dx.doi.org/10.1111/j.1467-6486.1976.tb00531.x

Chang, C.-T. 2011. Multi-choice goal programming with utility functions, European Journal of 
Operational Research 215: 439–445. http://dx.doi.org/10.1016/j.ejor.2011.06.041

Chankong, V.; Haimes, Y. Y. 1983. Multiobjective decision making: theory and methodology. New 
York: Elsevier Science. 

Charnes, A.; Cooper, W.; Ferguson, R. 1955. Optimal estimation of executive compensation by linear 
programming, Management Science 1: 138–151. http://dx.doi.org/10.1287/mnsc.1.2.138

Chronopoulos, M.; De Reyck, B.; Siddiqui, A. 2011. Optimal investment under operational flex-
ibility, risk aversion, and uncertainty, European Journal of Operational Research 213: 221–237.  
http://dx.doi.org/10.1016/j.ejor.2011.03.007

Churchman, C. W.; Ackoff, R. L. 1954. An approximate measure of value, Journal of Operations 
Research of America 2(1): 172–187. 

Dominiak, C. 2006. Multicriteria decision aid under uncertainty, in T. Trzaskalik (Ed.). Multiple cri-
teria decision making’ 05. Katowice: Publisher of The Karol Adamiecki University of Economics in 
Katowice, 63–81.

Dominiak, C. 2009. Multi-criteria decision aiding procedure under risk and uncertainty, in T. Trzaskalik 
(Ed.). Multiple criteria decision making’ 08. Katowice: Publisher of The Karol Adamiecki University 
of Economics in Katowice, 61–88.

Dubois, D.; Prade, H. 1988. Possibility theory. New York: Plenum Press.

Durbach, I. N. 2014. Outranking under uncertainty using scenarios, European Journal of Operational 
Research 232(1): 98–108. http://dx.doi.org/10.1016/j.ejor.2013.06.041

Durbach, I. N.; Stewart, T. J. 2012. Modeling uncertainty in multi-criteria decision analysis, European 
Journal of Operational Research 223(1): 1–14. http://dx.doi.org/10.1016/j.ejor.2012.04.038

Ehrgott, M. 2005. Multicriteria optimization. 2nd ed. Berlin – Heidelberg: Springer. 

Eiselt, H. A.; Marianov, V. 2014. Multicriteria decision making under uncertainty: a visual approach, 
International Transactions in Operational Research 21(4): 525–540. http://dx.doi.org/10.1111/itor.12073

Ellsberg, D. 2001. Risk, ambiguity and decision. New York: Garland Publishing.

Etner, J.; Jeleva, M.; Tallon, J.-M. 2012. Decision theory under ambiguity, Journal of Economic Surveys 
26(2): 234–270. http://dx.doi.org/10.1111/j.1467-6419.2010.00641.x

Fishburn, P. C. 1984. Foundations of risk measurement. I. Risk or probable loss, Management Science 
30: 396–406. http://dx.doi.org/10.1287/mnsc.30.4.396

http://dx.doi.org/10.1111/j.1539-6924.2006.00826.x
http://dx.doi.org/10.1016/j.ecolecon.2007.12.030
http://dx.doi.org/10.1016/j.ijar.2011.05.005
http://dx.doi.org/10.1016/j.ejor.2005.11.048
http://dx.doi.org/10.1111/j.1467-6486.1976.tb00531.x
http://dx.doi.org/10.1016/j.ejor.2011.06.041
file:///D:/R%20A%20S%20A/Z%20U%20R%20N%20A%20L%20A%20I/BME/BME_Vol_12_No_2_2014/txt/../../Local Settings/Temp/.  http:/dx.doi.org/10.1287/mnsc.1.2.138
http://dx.doi.org/10.1016/j.ejor.2011.03.007
http://dx.doi.org/10.1016/j.ejor.2013.06.041
http://dx.doi.org/10.1016/j.ejor.2012.04.038
http://dx.doi.org/10.1111/itor.12073
http://dx.doi.org/10.1111/j.1467-6419.2010.00641.x
http://dx.doi.org/10.1287/mnsc.30.4.396


298

H. Gaspars-Wieloch. The use of a modification of the Hurwicz’s decision rule in multicriteria decision...

Gaspars, H. 2007. Alokacja zasobu w warunkach niepewności: modele decyzyjne i procedury oblic-
zeniowe [Ressource allocation under uncertainty: choice models and computational procedures], 
Operations Research and Decisions 17(1): 5–27. (in Polish).

Gaspars-Wieloch, H. 2011. Metakryterium w ciągłej wersji optymalizacji wielocelowej – analiza 
mankamentów metody i próba jej udoskonalenia [The aggretage objective function in the continuous 
version of the multicriteria optimization – analysis of the shortcomings of the method and attempt 
at improving it], in E. Konarzewska-Gubała (Ed.). Zastosowania badań operacyjnych. Zarządzanie 
projektami, decyzje finansowe, logistyka. Wrocław: Wydawnictwo Uniwersytetu Ekonomicznego we 
Wrocławiu, 313–332 (in Polish). 

Gaspars-Wieloch, H. 2012. Limited efficiency of optimization methods in solving economic decision 
problems [Ograniczona skuteczność metod optymalizacyjnych w rozwiązywaniu ekonomicznych pro-
blemów decyzyjnych], Ekonomista 2012/3: 303–324 (in Polish).

Gaspars-Wieloch, H. 2013. On a decision rule supported by a forecasting stage based on the de-
cision maker’s risk aversion, in L. Zadnik Stirn, J. Zerovnik, J. Povh, S. Drobne, A. Lisec (Eds.). 
SOR’13 Proceedings, The 12th International Symposium on Operational Research in Slovenia, 25–
27 September 2013, Dolenjske Toplice, Slovenia, Slovenian Society INFORMATIKA, Section for 
Operational Research, 53–59.

Gaspars-Wieloch, H. 2014a. Propozycja hybrydy reguł Hurwicza i Bayesa w podejmowaniu decyzji 
w warunkach niepewności [A hybrid of the Hurwicz and Bayes rules in decision making under uncer-
tainty], in T. Trzaskalik (Ed.) Modelowanie preferencji a ryzyko 2014. Studia Ekonomiczne. Zeszyty 
Naukowe Uniwersytetu Ekonomicznego w Katowicach 178, Katowice: Wydawnictwo Uniwersytetu 
Ekonomicznego w Katowicach, 74–92. (in Polish).

Gaspars-Wieloch, H. 2014b. On a decision for mixed strategy searching under uncertainty on the basis 
of the coefficient of optimism, Procedia – Social and Behavioral Sciences. 110: 923–931. Elsevier. 
http://dx.doi.org/10.1016/j.sbspro.2013.12.938 

Gaspars-Wieloch, H. 2014c. On a decision rule supported by a forecasting stage based on the deci-
sion maker’s coefficient of optimism, Central European Journal of Operations Research. Springer.  
http://dx.doi.org/10.1007/s10100-014-0364-5

Gaspars-Wieloch, H. 2014d. Modifications of the Hurwicz’s decision rules, Central European Journal 
of Operations Research 22(4): 779–794. http://dx.doi.org/10.1007/s10100-013-0302-y

Gaspars-Wieloch, H. 2014e. Modification of the maximin joy criterion for decision making under un-
certainty, Quantitative Methods in Economics XV. Warsaw (in press).

Gaspars-Wieloch, H. 2015. The impact of the structure of the payoff matrix on the final decision made 
under uncertainty, Asia-Pacific Journal of Operational Research (in press).

Ghirardato, P.; Maccheroni, F.; Marinacci, M. 2004. Differentiating ambiguity and ambiguity attitude, 
Journal of Economic Theory 118: 133–173. http://dx.doi.org/10.1016/j.jet.2003.12.004 

Gilboa, I. 2009. Theory of decision under uncertainty. Cambridge, New York: Cambridge University 
Press. 

Gilboa, I.; Schmeidler, D. 1989. Maxmin expected utility with non-unique prior, Journal of Mathematical 
Economics 18: 141–153. http://dx.doi.org/10.1016/0304-4068(89)90018-9

Ginevičius, R.; Podvezko, V.; Ginevičius, A. 2013. Quantitative evaluation of enterprise marketing 
activities, Journal of Business Economics and Management 14(1): 200–212. 
http://dx.doi.org/10.3846/16111699.2012.731143 

http://dx.doi.org/10.1016/j.sbspro.2013.12.938
http://dx.doi.org/10.1007/s10100-014-0364-5
http://dx.doi.org/10.1007/s10100-013-0302-y
http://dx.doi.org/10.1016/j.jet.2003.12.004
http://dx.doi.org/10.1016/0304-4068(89)90018-9
http://dx.doi.org/10.3846/16111699.2012.731143


299

Business, Management and Education, 2014, 12(2): 283–302

Ginevičius, R.; Zubrecovas, V. 2009. Selection of the optimal real estate investment project bas-
ing on multiple criteria evaluation using stochastic dimensions, Journal of Business Economics and 
Management 10(3): 261–270. http://dx.doi.org/10.3846/1611-1699.2009.10.261-270

Goodwin, P.; Wright, G. 2001. Enhancing strategy evaluation in scenario planning: a role for decision 
analysis, Journal of Management Studies 38(1): 1–16. http://dx.doi.org/10.1111/1467-6486.00225 

Groenewald, M. E.; Pretorius, P. D. 2011. Comparison of decision making under uncertain-
ty investment strategies with the money market, Journal of Financial Studies and Research  
http://dx.doi.org/10.5171/2011.373376 

Guo, P. 2014. One-shot decision theory: a fundamental alternative for decision under uncertainty, 
Human-Centric Decision-Making Models for Social Sciences 2014: 33–55. 
http://dx.doi.org/10.1007/978-3-642-39307-5

Guo, P. 2013. One-shot decision making with regret, in (ICIST) International Conference on Information 
Science and Technology, 23–25 March 2013, Yangzhou, China, 493–495. 
http://dx.doi.org/10.1109/ICIST.2013.6747596 

Guo, P. 2011. One-shot decision theory, IEEE Transactions on Systems, Man, and Cybernetics, Part A 
41(5): 917–926. http://dx.doi.org/10.1109/TSMCA.2010.2093891 

Guo, P. 2010. Private real estate investment analysis within one-shot decision framework, International 
Real Estate Review 13(3): 238–260.

Haeri, A.; Tavakkoli-Moghaddam, R. 2012. Developing a hybrid data mining approach based on multi-
objective particle swarm optimization for solving a traveling salesman problem, Journal of Business 
Economics and Management 13(5): 951–967. http://dx.doi.org/10.3846/16111699.2011.643445

Hayashi, T. 2008. Regret aversion and opportunity dependence, Journal of Economic Theory 139(1): 
242–268. http://dx.doi.org/10.1016/j.jet.2007.07.001

Hopfe, C. J.; Augenbroe, G. L. M.; Hensen, J. L. M. 2013. Multicriteria decision making under uncer-
tainty in building performance assessment, Building and Environment 69: 81–90. 
http://dx.doi.org/10.1016/j.buildenv.2013.07.019

Hsu, J.-C. 2014. A hybrid multiple criteria decision-making model for investment decision making, 
Journal of Business Economics and Management 15(3): 509–529. 
http://dx.doi.org/10.3846/16111699.2012.722563

Hurwicz, L. 1952. A criterion for decision making under uncertainty. Technical Report, 355. Cowles 
Commission. 

Hwang, C. L.; Yoon, K. 1981. Multiple attribute decision making methods and applications: a state of 
the art survey. New York: Springer-Verlag. 

Jahn, J. 2004. Vector optimization theory, applications and extensions. Berlin: Springer. 

Janjic, A.; Andjelkovic, A.; Docic, M. 2013. Multiple criteria decision making under uncertainty based 
on stochastic dominance, in Proceedings of the 2013 International Conference on Applied Mathematics 
and Computational Methods in Engineering, 16–19 July 2013, Rhodes Island, Greece, 86–91. 

Kapsos, M.; Christofides, N.; Rustem, B. 2014. Worst-case robust Omega ratio, European Journal of 
Operational Research 234(2): 499–507. http://dx.doi.org/10.1016/j.ejor.2013.04.025

Keeney, R.; Raiffa, H. 1993. Decisions with multiple objectives: preferences and value tradeoffs. 
Cambridge: Cambridge University Press.

http://dx.doi.org/10.3846/1611-1699.2009.10.261-270
http://dx.doi.org/10.1111/1467-6486.00225
http://dx.doi.org/10.5171/2011.373376
http://dx.doi.org/10.1007/978-3-642-39307-5
http://dx.doi.org/10.1109/ICIST.2013.6747596
http://dx.doi.org/10.1109/TSMCA.2010.2093891
http://dx.doi.org/10.3846/16111699.2011.643445
http://dx.doi.org/10.1016/j.jet.2007.07.001
http://dx.doi.org/10.1016/j.buildenv.2013.07.019
http://dx.doi.org/10.3846/16111699.2012.722563
http://dx.doi.org/10.1016/j.ejor.2013.04.025


300

H. Gaspars-Wieloch. The use of a modification of the Hurwicz’s decision rule in multicriteria decision...

Khorram, E.; Zarepisheh, M.; Ghaznavi-Ghosoni, B. 2010. Sensitivity analysis on the priority of the ob-
jective functions in lexicographic multiple objective linear programs, European Journal of Operational 
Research 207: 1162–1168. http://dx.doi.org/10.1016/j.ejor.2010.05.016

Klir, G. J.; Folger, T. 1988. Fuzzy sets, uncertainty and information. Englewood Cliffs, New Jersey: 
Prentice-Hall.

Kmietowicz, Z. W.; Pearman, A. D. 1984. Decision theory, linear partial information and statistical 
dominance, Omega 12: 391–399. http://dx.doi.org/10.1016/0305-0483(84)90075-6

Knight, F. H. 1921. Risk, uncertainty, profit. Hart. Boston MA: Schaffner & Marx, Houghton Mifflin Co. 

Kofler, E.; Zweifel, P. 1993. One-shot decisions under linear partial information, Theory and Decision 
34: 1–20. http://dx.doi.org/10.1007/BF01076102

Korhonen, A. 2001. Strategic financial management in a multinational financial conglomerate: a mul-
tiple goal stochastic programming approach, European Journal of Operational Research 128: 418–434. 
http://dx.doi.org/10.1016/S0377-2217(99)00366-5

Lee, Y.-H. 2012. A fuzzy analytic network process approach to determining prospective competi-
tive strategy in China: a case study for multinational biotech pharmaceutical enterprises, Journal of 
Business Economics and Management 13(1): 5–28. http://dx.doi.org/10.3846/16111699.2011.620165

Liu, M.; Zhao, L. 2009. Optimization of the emergency materials distribution network with time win-
dows in anti-bioterrorism system, International Journal of Innovative Computing, Information and 
Control 5 (11A): 3615–3624.

Liu, Y.; Fan, Z.; Hang, Y. 2011. A method for stochastic multiple criteria decision making based on dom-
inance degrees, Information Sciences 181(19): 4139–4153. http://dx.doi.org/10.1016/j.ins.2011.05.013

Lotfi, V.; Yoon, Y. S.; Zionts, S. 1997. Aspiration-based search algorithm (ABSALG) for multiple ob-
jective linear programming problems: theory and comparative tests, Management Science 43: 1047–
1059. http://dx.doi.org/10.1287/mnsc.43.8.1047

Marinacci, M. 2002. Probabilistic sophistication and multiple priors, Econometrica 70: 755–764.  
http://dx.doi.org/10.1111/1468-0262.00303

Marler, R.; Arora, J. 2004. Survey of multiobjective methods for engineering, Structural and 
Multidisciplinary Optimization 26(6): 369–395. http://dx.doi.org/10.1007/s00158-003-0368-6

Michalska, E. 2014. Zastosowanie wskaźnika Omega w podejmowaniu decyzji przy niepełnej informa-
cji liniowej [Application of the Omega ratio in decision making with partial information], in J. B. Gajda 
(Ed.). Metody i zastosowania badań operacyjnych 2013. Łódź: Wydawnictwo Uniwersytetu Łódzkiego 
(in press).

Michnik, J. 2013a. Weighted influence non-linear gauge system (WINGS) – an analysis method for the 
systems of interrelated components, European Journal of Operation00al Research. 
http://dx.doi.org/10.1016/j.ejor.2013.02.007

Michnik, J. 2013b. Wielokryterialne metody wspomagania decyzji w procesie innowacji [Multi-
criteria methods supporting decisions in innovation process]. Katowice: Wydawnictwo Uniwersytetu 
Ekonomicznego w Katowicach. 

Mikhaidov, L.; Tsvetinov, P. 2004. Evaluation of services using a fuzzy analytic hierarchy process, 
Applied Soft Computing Journal 5(1): 23–33. 

Montibeller, G.; Gummer, H.; Tumidei, D. 2006. Combining scenario planning and multi-criteria deci-
sion analysis in practice, Journal of Multi-criteria Decision Analysis 14: 5–20. 
http://dx.doi.org/10.1002/mcda.403

http://dx.doi.org/10.1016/j.ejor.2010.05.016
http://dx.doi.org/10.1016/0305-0483(84)90075-6
http://dx.doi.org/10.1007/BF01076102
http://dx.doi.org/10.1016/S0377-2217(99)00366-5
http://dx.doi.org/10.3846/16111699.2011.620165
http://dx.doi.org/10.1016/j.ins.2011.05.013
http://dx.doi.org/10.1287/mnsc.43.8.1047
http://dx.doi.org/10.1111/1468-0262.00303
http://dx.doi.org/10.1007/s00158-003-0368-6
http://dx.doi.org/10.1016/j.ejor.2013.02.007
http://dx.doi.org/10.1002/mcda.403


301

Business, Management and Education, 2014, 12(2): 283–302

Officer, R. R.; Anderson, J. R. 1968. Risk, uncertainty and farm management decisions, Review of 
Marketing and Agricultural Economics 36(01). 17 p.

Pazek, K.; Rozman, C. 2009. Decision making under conditions of uncertainty in agriculture: a case 
study of oil crops, Poljoprivreda 15(1): 45–50. 

Piasecki, K. 1990. Decyzje i wiarygodne prognozy [Decisions and reliable forecasts]. Poznań: Akademia 
Ekonomiczna w Poznaniu. 

Podvezko, V. 2009. Application of AHP technique, Journal of Business Economics and Management 10(2): 
181–189. http://dx.doi.org/10.3846/1611-1699.2009.10.181-189

Pomerol, J. C. 2001. Scenario development and practical decision making under uncertainty, Decision 
Support Systems 31(2): 197–204. http://dx.doi.org/10.1016/S0167-9236(00)00131-7

Puppe, C.; Schlag, K. 2009. Choice under complete uncertainty when outcome spaces are state dependent, 
Theory and Decision 66: 1–16. http://dx.doi.org/10.1007/s11238-007-9082-y

Ravindran, A. R. 2008. Operations research and management science handbook, Boca Raton, London, New 
York: CRS Press. 

Render, B.; Stair, R. M.; Hanna, M. E. 2006. Quantitative analysis for management. Upper Saddle River, 
New Jersey: Pearson Prentice Hall.

Ram, C.; Montibeller, G.; Morton, A. 2010. Extending the use of scenario planning and MCDA 
for the evaluation of strategic options, Journal of Operational Research Society 62(5): 817–829.  
http://dx.doi.org/10.1057/jors.2010.90

Savage, L. 1961. The foundations of statistics reconsidered, in Studies in Subjective Probability. New York: 
Wiley, 173–188. 

Sawaragi, Y.; Nakayama, H.; Tanino, T. 1985. Theory of multiobjective optimization, Mathematics in Science 
and Engineering 176, 296 p. Orlando: Academic Press. http://dx.doi.org/10.1137/1028177

Saaty, T. L. 1980. The analytic hierarchy process. New York: McGraw Hill.

Saaty, T. L. 1996. Decision making with dependence and feedback: analytic network process. Pittsburgh: 
RWS Publications.

Schmeidler, D. 1986. Integral representation without additivity, Proceedings of the American Mathematical 
Society 97: 255–261. http://dx.doi.org/10.1090/S0002-9939-1986-0835875-8

Sikora, W. (Ed.). 2008. Badania operacyjne [Operations research]. Warszawa: Polskie Wydawnictwo 
Ekonomiczne.

Stewart, T. J. 2005. Dealing with uncertainties in MCDA, multiple criteria decision analysis: state of the art 
surveys, International Series in Operations Research & Management Science 78: 445–466. 

Suo, M. Q.; Li, Y. P.; Huang, G. H. 2012. Multicriteria decision making under uncertainty: an advanced 
ordered weighted averaging operator for planning electric power systems, Engineering Applications of 
Artificial Intelligence 25(1): 72–81. http://dx.doi.org/10.1016/j.engappai.2011.08.007

Triantaphyllou, E.; Lin, C. 1996. Development and evaluation of five fuzzy multiattribute decision-making 
methods, International Journal of Approximate Reasoning 14(4): 281–310. 
http://dx.doi.org/10.1016/0888-613X(95)00119-2

Trzaskalik, T. 2008. Wprowadzenie do badań operacyjnych z komputerem [Introduction to operations re-
search with computer]. 2nd ed. Warszawa: Polskie Wydawnictwo Ekonomiczne.

http://dx.doi.org/10.3846/1611-1699.2009.10.181-189
http://dx.doi.org/10.1016/S0167-9236(00)00131-7
http://dx.doi.org/10.1007/s11238-007-9082-y
http://dx.doi.org/10.1057/jors.2010.90
http://dx.doi.org/10.1137/1028177
file:///D:/R%20A%20S%20A/Z%20U%20R%20N%20A%20L%20A%20I/BME/BME_Vol_12_No_2_2014/txt/../../Local Settings/Temp/. http:/dx.doi.org/10.1090/S0002-9939-1986-0835875-8
http://dx.doi.org/10.1016/j.engappai.2011.08.007
http://dx.doi.org/10.1016/0888-613X(95)00119-2


302

H. Gaspars-Wieloch. The use of a modification of the Hurwicz’s decision rule in multicriteria decision...

Trzaskalik, T. 2014. Wielokryterialne wspomaganie decyzji [Multicriteria decision aiding]. Warszawa: 
Polskie Wydawnictwo Ekonomiczne.

Tsaur, S.; Chang, T.; Yen, C. 2002. The evaluation of airline service quality by fuzzy MCDM, Tourism 
Management 23(2): 107–115. http://dx.doi.org/ 10.1016/S0261-5177(01)00050-4

Tversky, A.; Kahneman, D. 1992. Advances in prospect theory: cumulative representation of uncertainty, 
Journal of Risk and Uncertainty 5: 297–323. http://dx.doi.org/10.1007/BF00122574

Urli, B.; Nadeau, R. 2004. PROMISE/scenarios: an interactive method for multiobjective stochastic lin-
ear programming under partial uncertainty, European Journal of Operational Research 155(2): 361–372.  
http://dx.doi.org/10.1016/S0377-2217(02)00859-7

Van der Heijden, K. 1996. Scenarios: the art of strategic conversation. Chichester: John Wiley and Sons.

von Neumann, J.; Morgenstern, O. 1944. Theory of games and economic behavior. Princeton, New York: 
Princeton University Press. 

Wald, A. 1950. Statistical decision functions. New York: Wiley.

Wang, Y.; Elhag, T. 2006. Fuzzy TOPSIS method based on alpha level sets with an application to bridge risk 
assessment, Expert Systems with Applications 31(2): 309–319. http://dx.doi.org/10.1016/j.eswa.2005.09.040

Watkins, D. W. Jr.; McKinney, D. C.; Lasdon, L. S.; Nielsen, S. S.; Martin, Q. W. 2000. A scenario-based 
stochastic programming model for water supplies from the Highland Lakes, International Transactions in 
Operational Research 7: 221–230. http://dx.doi.org/10.1111/j.1475-3995.2000.tb00195.x

Weber, M. 1987. Decision making with incomplete information, European Journal of Operational Research 
28: 44–57. http://dx.doi.org/10.1016/0377-2217(87)90168-8

Wu, C.-M.; Hsieh, C. L.; Chang, K.-L. 2013. A hybrid multiple criteria decision making model for supplier 
selection, Mathematical Problems in Engineering 2013. 8 p. http://dx.doi.org/10.1155/2013/324283

Xu, R. 2000. Fuzzy least-squares priority method in the analytic hierarchy process, Fuzzy Sets and Systems 
112(3): 395–404. http://dx.doi.org/10.1016/S0165-0114(97)00376-X

Yu, C. 2002. A GP-AHP method for solving group decision-making fuzzy AHP problems, Computers and 
Operations Research 29(14): 1969–2001. http://dx.doi.org/10.1016/S0305-0548(01)00068-5

Zaras, K. 2004. Rough approximation of a preference relation by a multi-attribute dominance for determin-
istic, stochastic and fuzzy decision problems, European Journal of Operational Research 159(1): 196–206. 
http://dx.doi.org/10.1016/S0377-2217(03)00391-6

Zavadskas, E. K.; Kaklauskas, A. 1996. Determination of an efficient contractor by using the new method of 
multi criteria assessment, in D. A. Langford, A. Retik (Eds.). International Symposium for “The Organization 
and Management of Construction”. Shaping Theory and Practice. Vol. 2: Managing the Construction Project 
and Managing Risk. CIB W 65. London, Weinheim, New York, Tokyo, Melbourne, Madras, London: E and 
FN SPON, 94–104. 

Helena GASPARS-WIELOCH. PhD, Assistant professor in the Department of Operations Research in 
the Poznan University of Economics. Research interests: operations research, decision making under 
uncertainy, project management, multi-criteria optimization, algorithms and heuristics.

http://dx.doi.org/ 10.1016/S0261-5177(01)00050-4
http://dx.doi.org/10.1007/BF00122574
http://dx.doi.org/10.1016/S0377-2217(02)00859-7
http://dx.doi.org/10.1016/j.eswa.2005.09.040
http://dx.doi.org/10.1111/j.1475-3995.2000.tb00195.x
http://dx.doi.org/10.1016/0377-2217(87)90168-8
http://dx.doi.org/10.1155/2013/324283
http://dx.doi.org/10.1016/S0165-0114(97)00376-X
http://dx.doi.org/10.1016/S0305-0548(01)00068-5
http://dx.doi.org/10.1016/S0377-2217(03)00391-6

